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A finite element solution of the Regularised Long Wave Equation, based on Galerkin’s 
method using cubic splines as element shape functions, is set up. A linear stability analysis 
shows the scheme to be unconditionally stable. Test problems, including the migration and 
interaction of solitary waves, are used to validate the method, which is found to be accurate 
and efficient. The three invariants of the motion are evaluated to determine the conservation 
properties of the algorithm. The temporal evolution of a Maxwellian initial pulse is then 
studied. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Solitary waves are wave packets or pulses which propagate in nonlinear disper- 
sive media. Due to dynamical balance between the nonlinear and dispersive effects 
these waves retain a stable waveform. A soliton is a very special type of solitary 
wave which also keeps its waveform after collision with other solitons. 

The Regularised Long Wave (RLW) Equation is an alternative description of 
nonlinear dispersive waves to the more usual Kortewegde Vries (KdV) equation 
[ 11. It has been shown to have solitary wave solutions and to govern a large num- 
ber of important physical phenomena such as shallow water waves and plasma 
waves [ 1,2]. 

Few analytic solutions are known. Numerical solutions based on finite difference 
techniques [3], Runge Kutta and predictor/corrector [4] methods, and Galerkin’s 
method [S, 63 have been given. In an implementation of Galerkin’s method, 
Wahlbin [63 used a trial function composed of Hermite cubic polynomials, while 
Alexander and Morris [S] constructed a global trial function mainly from cubic 
splines. In the latter case the closure at the boundaries was effected with quintic 
polynomials and an implicit finite element approach used, in which the element 
matrices were not explicitly formed, but the global trial function was used directly 
to determine the global equations. Alexander and Morris [S] solve the resulting 
system of ordinary differential equations using the IMSL Library (1975) routine 
DREBS. In the present paper we set up an explicit finite element solution using 
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cubic B-splines [7] as the element “shape” and weight functions throughout the 
solution region. The element matrices are determined algebraically using the com- 
puter algebra package REDUCE [S]. The equations governing the problem are 
obtained by explicitly assembling together the element matrices to obtain the full 
global matrix equation. The time integration used to solve the resulting system of 
ordinary differential equations involves a Crank-Nicholson scheme together with 
an inner iteration to cope with the nonlinear term; details are given in Section 3. A 
linear stability analysis of the numerical scheme shows it to be unconditionally 
stable. 

The method is shown to represent accurately the migration of a single solitary 
wave. The interaction of two solitary waves is then studied in detail. Finally the 
evolution of a Maxwellian initial condition into stable solitary waves is investigated. 

2. THE GOVERNING EQUATION 

The RLW equation derived for long waves propagating in the positive 
x-direction has the form [ 1 ] 

where 6 is a positive parameter and the subscripts x and t denote differentiation, 
with the boundary condition V-r 0 as x --+ + co. 

Using the mapping U = V+ 1 we can transform this equation to 

u,+ uu,-su,,,=o (1) 

with boundary condition U + 1 as x--t f co. In this paper we consider the RLW 
equation to be of form (1) and use periodic boundary conditions for a region 
a < x < b. The form of the initial pulse is chosen so that at large distances from the 
pulse the function U tends to 1 to agree with the physical boundary condition. 

With weight function W(x) Galerkin’s method produces for Eq. (1) the integral 

J 
b 

W(U,+ UU,-SU,,,)dx=O. (2) 0 

The presence of the second spatial derivative in the integrand implies that the 
interpolation function and its first derivative must be continuous throughout the 
region a<x< b. If we integrate by parts we find that 

j-” w( u, + vu,) dx + J” 6 w, u,, dx = o. 
a (I 

(3) 

The requirement on the interpolation functions is now simply that only the func- 
tions themselves need be continuous throughout the region. This is a minimum 
requirement and we have chosen to use as “shape” and weight functions the very 
adaptable cubic B-splines with their well-known advantages. 
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The initial conditions on the function U(x, t) are prescribed in Section 6 when the 
test problems are discussed. 

3. THE FINITE ELEMENT SOLUTION 

Cubic B-splines are used to approximate the solution U(x, t). Let a = x0 <x1 < 
x2-e **. <XN = b be a partition of [a, b] by the points xi, and let di(x) be cubic 
B-splines with knots at the points xi. The set of splines (4-i) #,,, . . . . dN, 4N+ 1 } 
form a basis for functions defined over [a, b] [7]. We seek the approximation 
U,(x, t) to the solution U(x, t) which uses these splines as trial functions 

N+l 

uN(xv r, = 1 c,(r) #dx), (4) 
I= -1 

where the c, are time dependent quantities to be determined from Eq. (3). 
We identify the finite elements with the intervals [x,, x,+ i] with nodes at xI and 

x1+ 1. Each cubic B-spline covers four elements [7]; consequently each element 
C% x1+ 11 is covered by four splines (#[- 1, 4,, (6,+ 1, 4/+ *) which are given in terms 
of a local coordinate system <, where t =x - xI and 0 < c d h, by 

(5) 

All other splines are zero over this element. The variation of U(x, t) over the 
element is given by ii-2 

u(x, z)’ 1 cj4ji(x)9 cx,, XI+ 11. (6) 
j-i-1 

The #j(x), which are graphed in Fig. 1, thus act as shape functions for the element, 
with the cj as element parameters. It is this form for the cubic B-splines, showing 
the variation of all contributing splines over a single interval, which is most useful 
in the finite element approach rather than the more usual expression showing the 
variation of a single spline over several intervals. The nodal values of U(x, t) and 
the derivatives at the nodes are given in terms of the element parameters by 

u,= U(x,)=c,-,+4c,+c,+, 

ul= u~(xi)=;(c,+,-c,-l) 

ul’ = cqx,) = 6 (c 
h2 1+1 -2c,+cl-,), 

where the symbol 1 denotes differentiation with respect to x. 

(7) 
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FIG. 1. The cubic B-splines covering the element [x,, x,+ ]I. 

The finite element equations that we shall set up will not be expressed in terms 
of the four nodal parameters UI, Uj as is the case with cubic Hermite interpolation 
functions, but in terms of the four element parameters c,, so that we shall not 
directly determine the nodal values as is the case with the usual finite element for- 
mulations [9]. However, these can always be recovered, when required, using 
Eq. (7). 

For a typical element we have the contribution 

s X/Cl 
[W(U,+ UU,)+6W,U,,] dx. (8) 

XI 

Now using (7) in (8) and identifying the weight function W(x) with a cubic spline 
we obtain 

which can be written in matrix form as 

(9) 

(10) [A” + SDe] t? + ceTLece, 
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where 

ce = (Cl- 1, Cl, c/+ 15 c,+ 2JT. 

The element matrices are given by the integrals 

445 

(11) 

and 

(12) 

(13) 

Lik = lx”’ 4iQlJ4k dxp (14) 
XI 

where i, j, k take only the values 1- 1, 1, 1+ 1, I+ 2 for the typical element 
[x,, x,+ 1]. The matrices A’ and D” are therefore 4 x 4 and L’ is 4 x 4 x 4. An 
associated 4 x 4 matrix 

I+2 

Bf= 1 L;& (15) 
k=l-1 

which depends also upon the parameters c; is used in the following theoretical dis- 
cussions. The element matrices A”, D”, L”, and B” were determined algebraically 
from Eq. (5) using REDUCE [S]. We obtain 

i 

20 129 60 1 

Ae=& 

129 1188 933 60 
(16) 

60 933 

1188 129 1 60 129 20 i 

/ 18 21 

De=& 
21 102 -87 -36 

-36 -87 102 21 
-3 -36 21 18 

(17) 

and 

B;, = - &(280,1605,630, 5) ce 

B;2 = - &,(150, 1305,792,21) ce 
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BT3 = &420,2781, 1314,21) ce 

BT4 = &-( 10, 129, 108, 5) ce 

B;, = - &(1605, 10830,5349, 108) ce 

Bi2 = - j& 1305,17640, 17541, 1314) ce 

Bz3 = &(2781,25002,17541,792) c= 

B;c, = & 129,3468,5349,630) ce 

B& = - &(630,5349,3468, 129) ce 

B$ = - j&(792, 17541,25002,2781) ce 

B& = &(1314, 17541,17640, 1305) ce 

B;4 = &,( 108,5349,10830, 1605) ce 

B;, = - &(5, 108, 129, 10) ce 

B& = - &(21, 1314,2781,420) ce 

B;, = &,(21,792, 1305, 150) ce 

B& = & (5,630, 1605,280) ce, 

where ce is given by Eq. (11). 
Assembling contributions from all elements leads to the equation 

(A+dD)e+Bc=O, 
where 

(18) 

c=(c-1, co, Cl, . . . . cN+l)=‘, (19) 

and A, B, D are derived from the element matrices A”, B”, D” in the usual way. The 
three assembled matrices are septadiagonal. The general row for each matrix has 
the following form. 

A: k (1,120, 1191,2416, 1191, 120, 1) 

D: - & (3,72,45, - 240,45, 72, 3) 

B:& (-(5,108, 129, lO,O, O,O)c, -(21, 1944,8130,3888, 129,O,O)c, 

- (-21,0, 17841,35682,8130, 108,O) c, 
(5, 1944, 17841,0, - 17841, - 1944, -5)c, 
(0, 108,8130,35682, 17841,0, -2l)c, (O,O, 129,3888, 8130,1944,21)c, 
(0, O,O, 10, 129, 108, 5) c), 



RLW SOLITARY WAVES 447 

where c=(c,~3,c~-~2,c,-1,c~,c,+1,c,+2,c,+3), for row 1. The matrices A and D 
are symmetric while the form of B has a somewhat more complex structure. 

We time centre on t = (n + i) A, and write 

1 C=$c”+Cn+l); &L(c”+l - 0, (20) 
f 

where cn are the parameters at time level nA, and A, is the timestep. Equation (18) 
can now be written 

A+SD+$B cn+‘= 1 [ A+6D-$B c”, 1 (21) 

which is a recurrence relationship for the temporal development of c. In Eq. (21), 
B depends on c = i(c” + c”+ ‘). The following general solution procedure is therefore 
adopted. 

1. Approximate B by B* derived from c* = c” + $(cn -c”-‘), and obtain a first 
approximation to c”+l from Eq. (21). 

2. Iterate two or three times to refine the approximation to c”+ ‘. 
Now proceed to the next time step, and repeat this procedure. 

For the initial step we approximate B by B* calculated from co only. The 
approximation to c’ is refined by iterating up to 10 times. 

From c using Eqs. (6) and (7) the time dependence of the solution U(x, t) can be 
determined. Equations (21) are septadiagonal in form and can be easily and directly 
solved. To start the process an initial vector co must be determined from the 
conditions U(x, 0); this is discussed in Section 5. 

4. LINEAR STABILITY ANALYSIS OF THE NUMERICAL SCHEME 

The von Neumann stability theory is applied and the growth of a Fourier mode 

q = peiW, (22) 

where k is the mode number and h is the element size, is determined for a linearisa- 
tion of the numerical scheme (21). 

In this linearisation we assume that the quantity U in the nonlinear term UU, is 
locally constant. This is equivalent to assuming that the corresponding values of cj 
are also constant and equal to c. 

Substituting the Fourier mode (22) into Eq. (21) we obtain 

C -*+l=&+“, 

where the growth factor g has the form 

(23) 

a - ib 
g=- a+ib’ (24) 
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with 
a = 2(P - 3Q) cos 3kh + 2( 120P - 72Q) cos 2kh 

+(1191P-45Q)coskh+2416P+240Q 

b = 6R sin 3kh + 336R sin 2kh + 1470R sin kh 

and 

The magnitude of the growth factor is thus 

lgl =&=L 

and the linearised scheme is unconditionally stable. 

(25) 

5. THE INITIAL STATE 

To determine the initial vector co from the initial condition on U,(x, 0) we first 
rewrite Eq. (4) for the initial condition 

where we seek the c,“. To do this we require U,(x, 0) to satisfy the following 
constraints: 

(a) It shall agree with the initial conditions U(x, 0) at the knots xj, 
j = 0, . . . . N. 

(b) Periodic boundary conditions will be satisfied, U(x,) = U(x,). 

This leads to an equation of the form 

AC’ = b. (26) 

This matrix equation is nearly tridiagonal so apply a variant of the Thomas 
algorithm for its solution. 

6. THE TEST PROBLEMS 

We now validate our algorithm by studying the motion and interaction of 
solitary waves. 

It is well known that Eq. (1) has a two parameter analytic solution of the form 

U(x, t)=b+3csech2(k[x-x0-(b+c)t]}, (27) 



where 
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kc1 c 
J 2 6(b+c)’ 

(28) 

and b and c are constants. 
This solution, with b = 1, is physically valid and corresponds to that used by 

Eilbeck and McGuire [3] and Santarelli [ 1 l] and applies to a single solitary wave 
of magnitude 3c, initially centred on x0, propagating to the right without change 
of shape at a steady velocity (1 + c). 

Olver [13] has shown that the RLW equation possesses only three polynomial 
invariants. We examine the conservation properties of the algorithm by calculating 
these invariants, which for the RLW equation in the form (1) are 

Cl = job U dx, 

and 

C2=jb (U’-+SU~)dx, 
a 

C,=j’ U3dx. 
0 

First, we consider the motion of a single solitary 
condition 

wave and take as initial 

U(x, 0) = 1 + 3c sech2(Ax + D ) ‘(29) 

with c = 0.3, 6 = 1.0, A = $(c/6( 1 + c))“’ and D = -4OA. The range 0 6 x < 80 is 
divided into 400 elements of equal length 0.2 and a time step A,=O.l used. We 

TABLE I 

Time C, c2 C3 L, x 10’ 

0.0 87.4940 99.6920 119.2087 0.018 
0.5 87.4941 99.6922 119.2089 0.109 
1.0 87.4942 99.6923 119.2091 0.199 
1.5 87.4944 99.6927 119.2095 0.289 
2.0 87.4945 99.6930 119.2100 0.378 
2.5 87.4947 99.6943 119.2104 0.472 
3.0 87.4949 99.6936 119.2110 0.565 
3.5 87.4951 99.6940 119.2114 0.657 
4.0 87.4953 99.6943 119.2118 0.747 
4.5 87.4955 99.6948 119.2125 0.832 
5.0 87.4957 99.6951 119.2130 0.901 
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observe the solitary wave move to the right unchanged in form and with a velocity 
c = 1.3. 

To examine more carefully the behaviour of the numerical scheme we use the L, 
norm to compare the numerical with the exact solution (27) and the quantities C,, 
Cz, and C3 to measure conservation. Our results are given in Table I. We see that 
C,, Cz, and C3 are satisfactorily constant, each changing less than 5 x 10b3% 
during the experiment. The L, error is also small compared with values quoted by 

0 10 20 30 40 50 60 70 
X 

FIG. 2. Santarelli experiment. (a) State at time f = 20. (b) As (a) with expanded vertical scale. 
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other authors [lo]. An expansion of the y-scale indicates from the solution curve 
that the error in the numerical method is of order 10d6. 

Santarelli [ 111 has simulated the interaction of a positive and a negative solitary 
wave and observed the collision to produce additional solitary waves, an observa- 
tion confirmed by Courtenay Lewis and Tjon [12]. We have repeated those 
experiments using the appropriate initial condition 

U(x,O)=l+U,+U,, 

where 

and 

4ki’ 1 
Aj= 

1-4ki” 
II.=-= 1 + Aj 
’ l-4kj 

and solved the RLW equation over the region d < x < 80 taking 6 = 1.0 and 
k, =0.4, X1 = 23, k, =0.6, X, = 38, h =0.2, and d, = 0.1. Our results confirm the 
observations given in Figs. l-9 of [ 1 l] in all details. In Fig. 2a we show the state 
at time t = 20.0. 

The smaller of the original pair of waves now lies at x = 70, and the larger 
(negative) wave is passing through the right-hand end of the region and reappearing 
at the left-hand end (the boundary conditions are periodic). The interval between 
x = 7 and x = 23 is the undisturbed part of the region, away from the pulse, where 
the solution remains 1. The waves lying between x = 25 and x = 60 have resulted 
from the interaction. We have expanded the vertical scale in Fig. 2b to show details 
of the structure of these waves. The point x = 30, where the curves show a sharp 
maximum, is the site of the original collision. Daughter waves appear to be 
emanating from this point. 

The values of Cr, C,, and C3 throughout the simulation are shown in Table II. 
The quantity C, in both sets of results is conserved to within 10e2%, and in the 
present simulation C2 changes by less than 5 x lo-‘% and C, by less than 0.5 %. 

TABLE II 

Time C, c2 Cl Cl Cl11 

0.0 13.9394 450.7290 289.0589 -6.060606 
4.0 73.9545 449.3988 286.0132 -6.060603 
8.0 73.943 1 450.5612 288.7828 -6.060552 

12. 13.9496 450.6183 288.2262 -6.060179 
14. 73.9522 450.5971 288.0318 -6.059980 
16. 73.9550 450.5750 287.8357 
20. 73.9604 450.5330 287.4558 
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Abdulloev et al. [2] have studied the interaction of two positive solitary waves 
and observed an almost stationary rarefaction wave of small amplitude ( - 10e3) 
with an exceedingly low velocity ( < 3 x 10-5) left behind the two diverging solitary 
waves of magnitudes about 6 and 2. We have chosen to study a similar situation 
using as initial condition 

U(x,O)=l+U,+U,, 
where 

Uj= 3Ajsech2[kj(x-Z,)], 

a 7.0 

6.0 

U 

5.0 

2.0 

1.0 

0 

b 1.02 

u 
1.01 - 

1.00 

0.99 - 

0.98 I I I 1 I I I I I 

0 10 20 30 40 50 60 70 80 90 100 110 120 
X 

I  I  1 I  1 t  I  1 1 ,  

0 10 20 30 40 50 60 70 80 90 100 110 120 
x 

FIG. 3. Abdulloev experiment. (a) State at time t = 25. (b) As (a) with expanded vertical scale 



RLW SOLITARY WAVES 453 

and 

The RLW equation was solved over the region 0 <x < 120 taking 6 = 1.0 and 
kl=0.4, %,=15, kz=0.3, X2=35, h=0.3, and d,=O.l. 

The configuration at time t = 25, which is some time after the interaction is com- 
plete, is shown in Fig. 3a. The two waves have apparently passed through one 

a 2 

-6 

-8 

-10 

b 1.04 

1.02 
u 

1.00 

0.96 

0.94 

0 10 20 30 40 50 60 70 80 90 100 110 120 

0 10 20 30 40 50 60 70 80 90 100 110 120 
X 

FIG. 4. Interaction of two negative waves. (a) State at time = 20. (b) As (a) with expanded vertical 
scale. 
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TABLE III 

Time C, C2 C3 

0 157.916 316.355 977.83 
4 157.914 316.350 977.81 
8 157.913 316.348 977.76 
12 157.912 316.344 977.34 
16 157.911 316.342 977.42 
20 157.910 316.340 917.74 
24 157.910 316.336 977.15 
21 157.909 316.335 977.15 
30 157.908 316.332 977.74. 

another and emerged unchanged by the encounter. Under magnification, Fig. 3b, 
we observe an oscillation of small amplitude, average N 5 x 10e3, trailing behind 
the solitary waves. This is in accord with the observations of Abdulloev et al. [2]. 

In Table III we record the values of the invariants C,, C,, and C3 for times 
throughout the simulation. We see that each is satisfactorily conserved, as each 
changes by less than lo-*% during the computer run. 

In addition we have studied the interaction of two negative solitary waves over 
the region 0 6 x < 120 using the previous initial condition with 6 = 1, k, =0.6, 
X,=82, k,=O.8, X2=67, h=0.3, and d,=O.l. 

After the interaction is completed we have the situation shown in Fig. 4a. The 
two waves have changed little but there is some evidence of an additional distur- 

2.4 

2.2 
u 

2.0 

1.8 

1.6 

1.4 

1.23 

1.0 

0.8 I I I I, I, I I 1 I I I I J 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
X 

FIG. 5. Maxwellian initial condition 6 = 0.04. State at t = 9. 
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TABLE IV 

Time c, G c3 

0 74.91 366.89 1092.9 
4 14.91 366.82 1092.4 
8 14.91 366.18 1090.3 

12 74.98 366.72 1091.5 
16 14.99 366.65 1091.0 
20 74.99 366.59 1090.4 

TABLE V 

6=0&l 

Time Cl C2 C3 

0.0 31.7725 34.8484 40.1006 
2.0 31.7730 34.8492 40.1019 
4.0 31.7133 34.8501 40.1029 
6.0 31.1737 34.8507 40.1037 
8.0 31.7739 34.8509 40.1039 

TABLE VI 

6 = 0.01 

Time Cl C2 C, 

0.0 31.7725 34.8108 40.1006 
2.0 31.7725 34.8108 40.1010 
4.0 31.7724 34.8106 40.1011 
6.0 31.7121 34.8102 40.1006 
8.0 31.1719 34.8097 40.1000 

10. 31.7718 34.8095 40.0996 
12. 31.1118 34.8094 40.0994 
14. 31.7718 34.8094 40.0995 

TABLE VII 

6 = 0.001 

Time Cl C2 G 

0.0 31.1725 34.8016 40.1426 
4.0 31.7724 34.8016 40.1426 
8.0 31.7724 34.8017 40.1439 

12. 31.7124 34.8016 40.1423 
16. 31.1724 34.8016 40.1469 
20. 31.7725 34.8017 40.1504 
24. 31.1725 34.8018 40.1477 
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bance. Under magnification, Fig. 4b, we see that an oscillation of amplitude 
- 4 x lo-’ is trailing behind the solitary waves. 

The values taken by the invariants Cr, C,, and C3 over the period of the simula- 
tion are given in Table IV. All are satisfactorily conserved; C, changes by less than 
3 x 10e2%, C2 by less than 8 x 10e2 %, and C3 by less than 0.25 %. These values 
are of the same order as those found for the Santarelli experiment. 

a 2.6 

2.4 - 

2.2 - 
U 

2.0 - 

1.8 - 

1.6 - 

1.4 - 

1.2 - 

1.0 

o.al ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 

b 1.02 

1.01 

U 

0 2 4 6 a 10 12 14 16 la 20 22 24 26 28 30 
X 

l--L 
0 2 4 6 a 10 12 14 16 ia 20 22 24 26 28 30 

X 

FIG. 6. Maxwellian initial condition 6 =O.Ol. (a) State at time t= 17. (b) As (a) with expanded 
vertical scale. 
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Finally, we have examined, for various values of the parameter 6, the evolution 
of an initial Maxwellian pulse into solitary waves, using as initial condition 

U(x, 0) = 1+ exp( - (x - 7)2). 

For 6 = 0.04 the Maxwellian develops into a single solitary wave with magnitude 
and velocity consistent with Eq. (27), plus a well developed oscillating tail as shown 
in Fig. 5. This result bears a strong resemblance to the corresponding KdV simula- 
tion. The values of the quantities Cr, C2, and C3 are given in Table V; each is 
satisfactorily constant as the maximum change is less than 0.01%. 

a I 
2.8 - 

2.4 - 

u 

2.0 - 

1.8 - 

0.8’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

b 1.08 

1.06 

U 

1.04 

1.02 

1.00 . 

0.981 1 ' ' ' " n 0 ' ' ' ' ' ' ' 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

x 

FIG. 7. Maxwellian initial condition 6 = 0.001. (a) State at f = 25. (b) As (a) with expanded vertical 
scale. Periodic boundary conditions. 

581/91/2-14 
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When 6 has a value of 0.01 the final state is composed of three solitary waves, 
Fig. 6a, each of which has magnitude and velocity consistent with Eq. (27). The 
breakup into solitary waves is not clean however as a small disturbance is evident 
behind the wave. When the vertical scale is magnified as in Fig. 6b it is seen clearly 
to be an oscillation of magnitude N 10-2. The values of the invariants C, , C,, and 
C, are given in Table VI. These each change by less than 0.005% during the run. 

With 6 = 0.001 the final state is made up from nine solitary waves, Figure 7a, 
whose peaks lie on a straight line so that their velocities are linearly dependent on 
their amplitudes and in fact obey a relationship consistent with Eq. (27). On 
magnification of the y-scale a well developed oscillating tail is again evident trailing 
behind the train of solitary waves; the tail appears at the right of Fig. 7b, and 
periodic boundary conditions are used. It thus appears that the initial Maxwellian 
pulse breaks up into a train of solitary waves, the number depending on the value 
of 6; however, the breakup is not clean and on magnification of the vertical scale 
we have always observed a small oscillating tail. The invariants for this problem are 
listed in Table VII. Observed changes are each less than 0.001%. 

The critical value of 6 for the KdV equation is 6 = 0.0625 [ 141, for which value 
the nonlinear and dispersive terms balance and the initial pulse travels across the 
mesh unchanged in form. In the RLW case a small oscillation of magnitude about 
2 x lo-* is again observed behind the pulse. There is, of course, no reason to 
suppose that the critical values for these two equations should exactly coincide. 

For values of 6 greater than the critical value solitary waves are not expected 
[14]. We have set up a simulation for 6 = 1 and find that the solution is a rapidly 
oscillating wave packet similar to those observed for the KdV equation. 

7. CONCLUSIONS 

We have shown that the finite element method set up in Section 3 can faithfully 
represent the amplitude, position, and velocity of a single solitary wave and that the 
interactions of two solitary waves as described by Abdulloev et al. [2] and 
Santarelli [ 111 are satisfactorily reproduced. The small stationary wave observed 
by Abdulloev et al. is confirmed in our simulation and the figures given by 
Santarelli agree in all particulars with those reproduced in Section 6 and show the 
generation of large amplitude (up to 4) daughter waves. The three invariants of 
motion are satisfactorily constant in all the computer simulations described here, so 
that the algorithm can fairly be described as conservative. The numerical scheme 
has been shown to be unconditionally stable and a run on a VAX 8650 using 150 
nodes and 100 time steps took 2.5 s of CPU time, so the scheme is reasonably 
efficient. We have further shown that the algorithm copes well with the generation 
of solitary waves from an arbitrary initial pulse and conclude that it may with 
confidence be used for runs of the RLW equation which are of long duration. 

We have demonstrated that, if used in the way described in Section 3, cubic 
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splines are as easy to apply as element shape functions as are the ubiquitious linear 
polynomials. We believe that this approach will be useful also for other applications 
where continuity of derivatives is essential. 
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